A Comparative Human-centric Analysis of Virtual Reality Simulation and Physical Dry lab Exercises

Michael Kasman, B.S.¹, Ziheng Wang, Ph.D.², Marco Martinez, M.D.³, Robert Rege, M.D.⁴, Herbert Zeh, M.D.⁴, Daniel Scott, M.D.⁴, and Ann Majewicz Fey, Ph.D.^{2,4}

Motivation

Are virtual reality and dry lab training skills learned interchangeable?

7. Running & Cut Rubber Band

2. Clutch & Camera Movement

Data Collection

Data Collection: Total of 72 individual experiment trials containing human physiological response signals

- Surface muscle electromyography (EMG) sensors
- Electrodermal response (EDA) sensor
 - Electromagnetic (EM) trackers: position
- Inertial measurement unit (IMU) sensors: angular velocity, linear acceleration

Analysis & Results

Significant differences (p-value < 0.05): muscle activation, path length, and

